

N-Channel 30V,10m Ω max,Power MOSFET

Product Summary					
V _{DS} (V)	$R_{DS(on),max}$ (m Ω)	I _D (A)			
30	10 @ V _{GS} = 10V	20 (1)			

Features

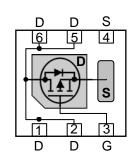
- Fast Switching
- ❖ Low On-Resistance
- Low Gate Charge

Application

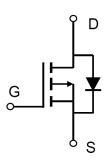
- ❖ Load Switch
- Motor Control
- Power Management

General Information

Shipping


- One shipping options is offered as standard
- Un-sawn wafer

Handling


- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environmen

DFN2X2-6L

Equivalent circuit

Absolute maximum rating@25℃						
Parameter			Limit	Unit		
Drain-source voltage			30	V		
Gate-source voltage			±20	V		
	T _C =25°C ⁽¹⁾		20			
Continuous drain current	T _C =100°C ⁽¹⁾	l _D	13	А		
Pulsed drain current ⁽²⁾			80			
Avalanche energy, single pulse ⁽³⁾			16	mJ		
Power dissipation	Tc=25°C	P _D	6.2	W		
Operating junction and storage temperature range			-55 to 150	°C		

Thermal Characteristic

Parameter	Symbol	Max.	Unit	
Thermal resistance, junction-to-case	Steady state	R _{eJC}	20	°C/W

Electrical Characteristics (TJ=25 °C unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30			٧
△BVbss/△TJ	BVDSS Temperature Coefficient	Reference to 25°C , ID=1mA		0.027		V/°C
Baccom	Static Drain-Source On-Resistance2	Vgs=10V, ID=20A	-	7.5	10	mΩ
Rds(on)	Static Dialii-Source Off-Resistance2	Vgs=4.5V , ID=10A		10	13	1117.5
VGS(th)	Gate Threshold Voltage	-Vgs=Vps , Ip =250uA	1	1.5	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS=VDS, ID =250UA		-5.8		mV/°C
less	Drain Source Leekens Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	
IDSS	Drain-Source Leakage Current	VDS=24V , VGS=0V , TJ=55°C			5	uA
lgss	Gate-Source Leakage Current	VGS=±20V, VDS=0V			±100	nA
Qg	Total Gate Charge (4.5V)			19		
Qgs	Gate-Source Charge	Vps=15V , Vgs=10V , Ip=20A		6.4		nC
Qgd	Gate-Drain Charge			5		
T _{d(on)}	Turn-On Delay Time			7		
Tr	Rise Time	se Time $V_{DD}=15V$, $V_{GS}=10V$, $R_{G}=3\Omega$		6		20
T _{d(off)}	Turn-Off Delay Time	ID=10A		26		ns
Tf	Fall Time			7		
Ciss	Input Capacitance		-	950		
Coss	utput Capacitance Vps=15V , Vgs=0V , f=1MHz			140		pF
Crss	Reverse Transfer Capacitance			120		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current _{1,5}	V- V- OV Force Comment			20	Α
Іѕм	Pulsed Source Current _{2,5}	V _G =V _D =0V , Force Current			80	Α
Vsp	Diode Forward Voltage2	Vgs=0V , Is=1A , TJ=25°C			1.2	V
trr	Reverse Recovery Time IF=20A , dl/dt=100A/µs ,			7		nS
Qrr	Reverse Recovery Charge	TJ=25°C		6.5		nC

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.5mH, Rg=25R
- 4.The power dissipation is limited by 150 $^{\circ}\text{C}\ \ junction temperature}$
- 5.The data is theoretically the same as I_D and I_{DM}, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

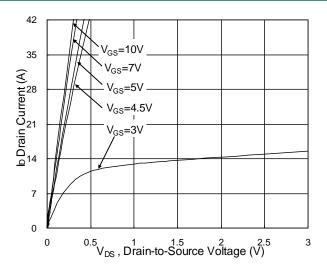


Fig.1 Typical Output Characteristics

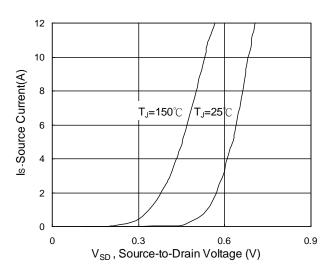


Fig.3 Forward Characteristics of reverse

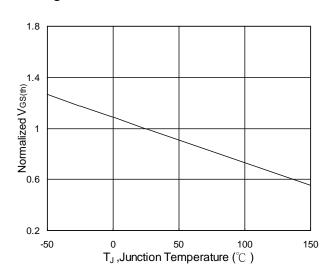


Fig.5 Normalized VGS(th) vs. TJ

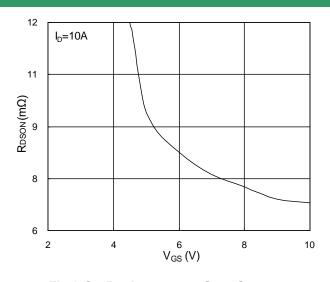


Fig.2 On-Resistance vs. Gate-Source

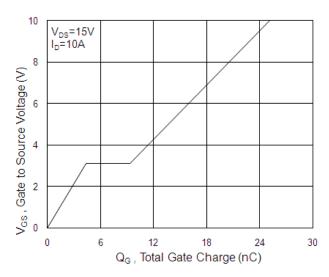


Fig.4 Gate-Charge Characteristics

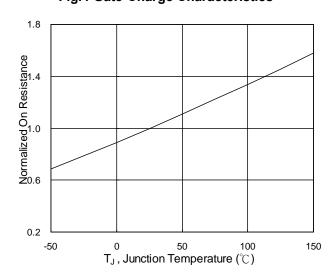
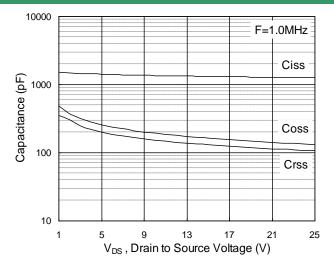



Fig.6 Normalized RDSON vs. TJ

Typical Performance Characteristics

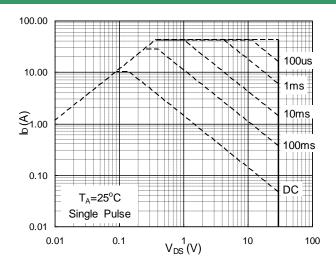


Fig.7 Capacitance

Fig.8 Safe Operating Area

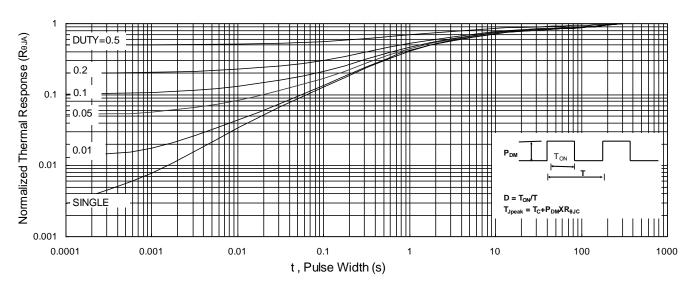


Fig.9 Normalized Maximum Transient Thermal Impedance

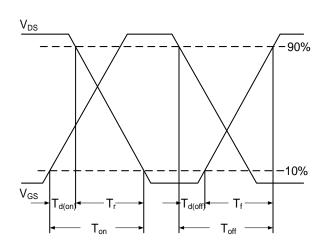


Fig.10 Switching Time Waveform

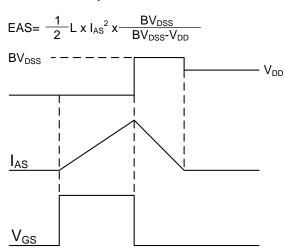
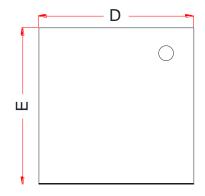
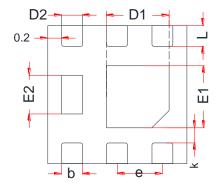
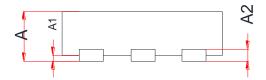




Fig.11 Unclamped Inductive Switching


Outline Drawing DFN2X2-6L

TOP VIEW

BOTTOM VIEW

SIDE VIEW

Cymphol	Dimensions in Millimeters				
Symbol	Min.	Тур.	Max.		
А	0.70	0.75	0.85		
A1	0.00	0.02	0.05		
A2		0.20 Ref.			
b	0.25	0.30 0.35			
D	1.95	2.00	2.05		
D1	0.85	0.90	0.95		
D2	0.25	0.30	0.35		
Е	1.95	2.00	2.05		
E1	0.75	0.80	0.85		
E2	0.56 Ref.				
е	0.65 BSC.				
L	0.30	0.35	0.40		
K	0.20				

Important Notice

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Gostone reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Gostone or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Gostone in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Gostone or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. In addition, any recipient of this document and the relevant products samples may not alter, decompile, disassemble, reverse engineer, or otherwise modify any information/samples received hereunder. Any intellectual property rights arising from the reverse engineering of Gostone's products shall belong to Gostone.