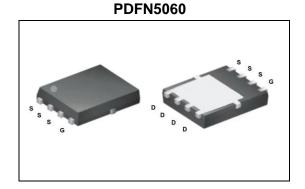


GOSTONE ROHS

GMS039N10F1

N-Channel 100V,3.9m Ω max,SGT Power MOSFET


I	Product Summary						
-	V _{DS} (V)	$R_{DS(on),max}$ (m Ω)	I _D (A)				
	100	3.9 @ V _{GS} = 10V	113 ⁽¹⁾				

Features

- Low R_{DS(on)} trench technology
- Low thermal impedance
- Fast switching speed
- 100% avalanche tested

Application

- DC/DC conversion
- Power switch
- Motor drives
- Synchronous Rectification in SMPS

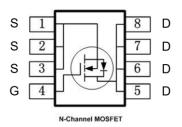
GMXXXX GS **FAYWWLT**

PDFN5060

NOTE: LOGO - GS

GMXXXXX- Part number code

F - Fab location code


A - Assembly location code

Y - Year code

WW - Week code

L&T - Assembly lot code

Equivalent circuit

Absolute maximum rating@25℃

Parameter		Symbol	Limit	Unit	
Drain-source voltage		V _{DS}	100		
Gate-source voltage		V_{GS}	±20	V	
	Tc=25°C ⁽¹⁾	- I _D	113		
Continuous drain current	T _C =100°C ⁽¹⁾		71	А	
Pulsed drain current ⁽²⁾			450		
Avalanche energy, single pulse ⁽³⁾		E _{AS}	578	mJ	
Dower dissipation	Tc=25°C	D	104	W	
Power dissipation	T _A =100°C	r _D	P _D 42		
Operating junction and storage temperature range		T _J , T _{stg}	-55 to 150	°C	

Thermal Characteristic

Parameter	Symbol	Max.	Unit	
Thermal resistance, junction-to-case	Steady state	R _{eJC}	1.2	°C/W
Thermal resistance, junction-to-ambient (4)	Steady state	Reja	44	C/VV

Electrical Characteristics (TJ=25 °C unless otherwise noted)

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Static parameter							
Drain to source breakdown voltage	$V_{(BR)DSS}$	V _{GS} = 0, I _D = 250 μA	100			V	
Gate-source threshold voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.0	3.0	4.0	V	
Gate-body leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V			1	μΑ	
Drain-source on-resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A		3.5	3.9	mΩ	
Forward transconductance (5)	g_{fs}	V _{DS} = 5 V, I _D = 30 A		48		S	
Gate resistance	Rg	f = 1 MHz		1.6		Ω	
Dynamic ⁽⁵⁾							
Total gate charge V _{GS} = 10V	Q_g			44		nC	
Total gate charge V _{GS} = 6.0V	Q_g	V _{DS} = 50 V, I _D = 20 A, V _{GS} = 10 V		28			
Gate-source charge	Q_gs	VDS - 30 V, ID - 20 A, VGS - 10 V		9.3			
Gate-drain charge	Q_{gd}			8.4			
Turn-on delay time	t _{d(on)}			9.2			
Rise time	t _r	V _{DS} = 50 V, I _D = 20 A, V _{GS} = 10 V,		15		no	
Turn-off delay time	t _{d(off)}	$R_{GEN} = 3 \Omega$		29		ns	
Fall time	t _f			19]	
Input capacitance	C _{iss}			3056			
Output capacitance	C _{oss}	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz		1379		pF	
Reverse transfer capacitance				19			
Reverse Diode Characteristics (5)							
Diode forward voltage	V _{SD}	V _{GS} = 0 V, I _F = 2 A		0.7	1.2	V	
Reverse recovery time	t _{rr}	I _F = 20 A, di/dt = 100 A/μs		65		ns	
Reverse recovery charge	Qrr	11- 20 A, allat - 100 A/µ3		138		nC	

Notes

- (1) Limited by maximum junction temperature.
- (2) Pulse width limited by maximum junction temperature.
- (3) $V_{DS} = 50 \text{ V}$, $V_{GS} = 10 \text{ V}$, L = 1.0 mH.
- (4) Device mounted on FR-4 substrate PC board with 2oz copper in 1inch square cooling area.
- (5) Guaranteed by design, not subject to production testing.

Typical Performance Characteristics

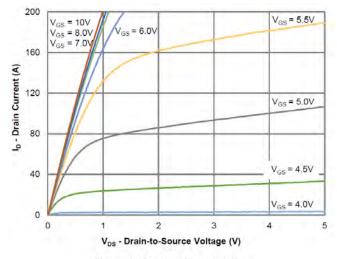


Figure 1: Output Characteristics

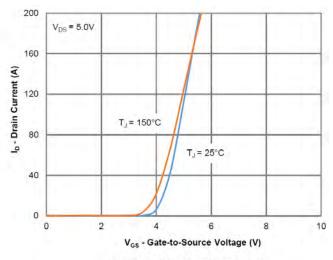


Figure 2: Transfer Characteristics

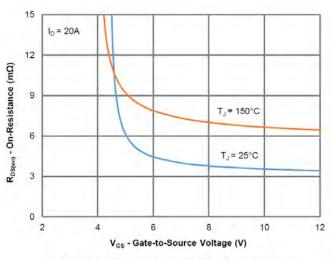


Figure 3: On-Resistance vs. Gate-Source Voltage

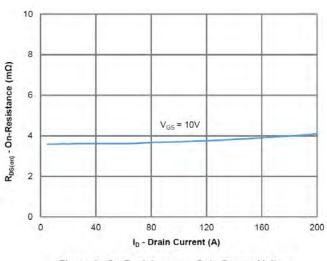


Figure 4: On-Resistance vs. Gate-Source Voltage

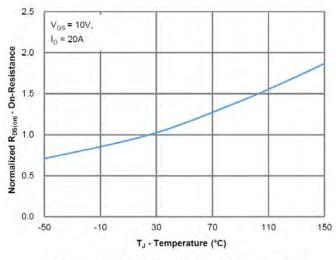


Figure 5: On-Resistance vs. Junction Temperature

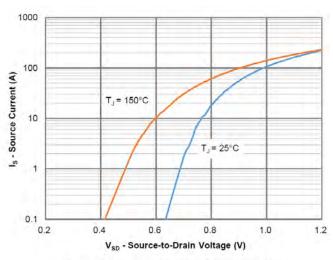


Figure 6: Source-Drain Diode Forward Voltage

Typical Performance Characteristics

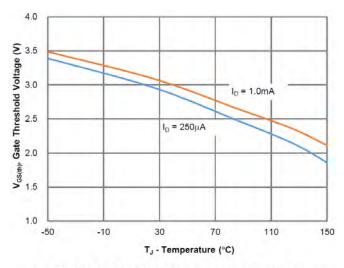


Figure 7: Gate Threshold Variation vs. Junction Temperature

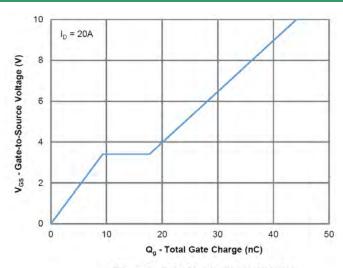


Figure 8: Gate Charge Characteristics

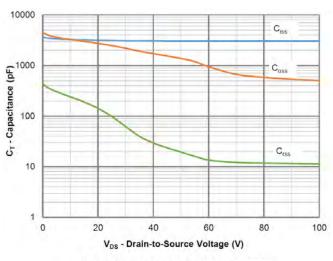


Figure 9: Capacitance Characteristics

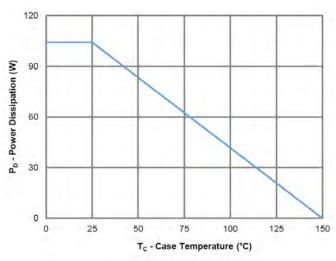


Figure 10: Power Derating

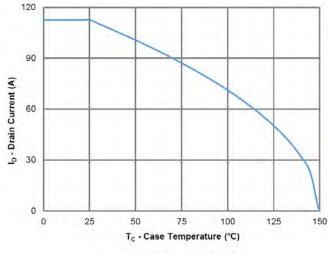


Figure 11: Current Derating

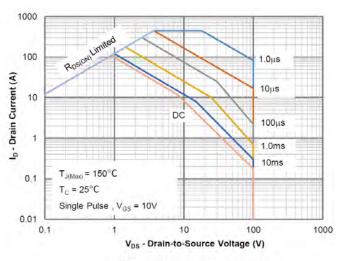
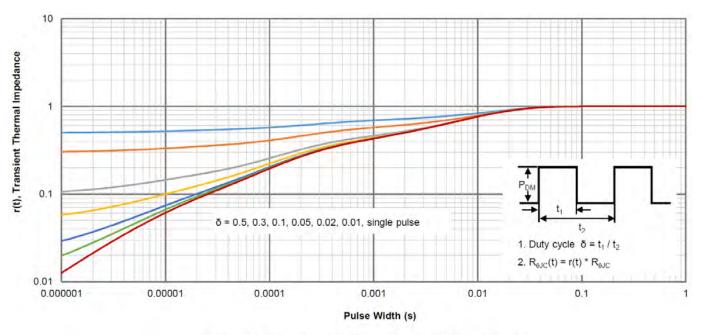
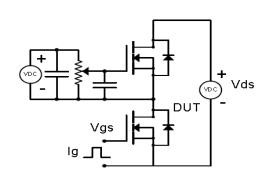
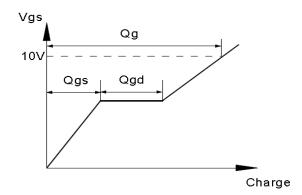
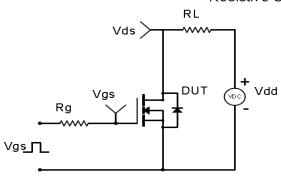


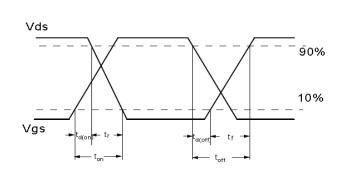
Figure 12: Safe Operating Area

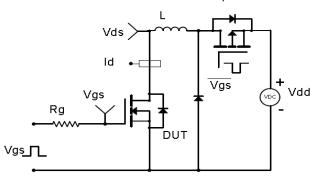
Typical Performance Characteristics

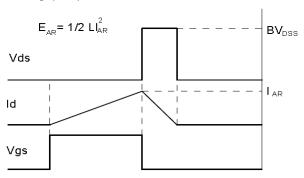



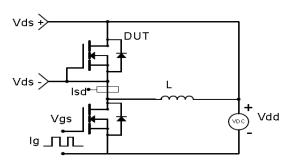

Figure 13: Normalized Maximum Transient Thermal Impedance

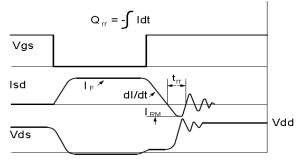

Test Circuit & Waveform

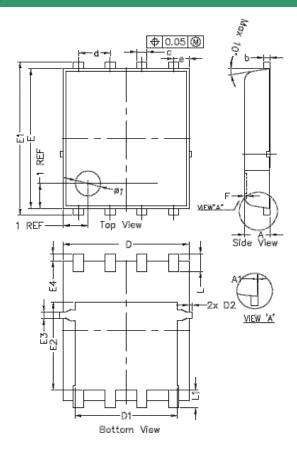

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms

Outline Drawing PDFN5060

Dim	Millimeters					
Dim	Min	Nom	Max			
А	0.900	1.000	1.100			
A1	0.000		0.050			
b	0.246	0.254	0.312			
С	0.310	0.410	0.510			
d		1.27BSC	27BSC			
D	4.950	5.050	5.150			
D1	4.000	4.100	4.200			
D2			0.125			
е						
E	5.500	5.600	5.700			
E1	6.050	6.150	6.250			
E2	3.425	3.525	3.625			
E3	0.150	0.250	0.350			
E4	0.175	0.275	0.375			
F			0.100			
L	0.500	0.600	0.700			
L1	0.600	0.700	0.800			

Important Notice

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Gostone reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Gostone or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Gostone in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Gostone or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. In addition, any recipient of this document and the relevant products samples may not alter, decompile, disassemble, reverse engineer, or otherwise modify any information/samples received hereunder. Any intellectual property rights arising from the reverse engineering of Gostone's products shall belong to Gostone.