

N-Channel 100V, 2.0mΩ max., TOLL MOSFET

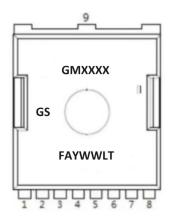
Product Summary					
V _{DS} (V)	$R_{DS(on),max}$ (m Ω)	I _D (A)			
100	2.0 @ V _{GS} = 10V	259 ⁽¹⁾			

Features

- Low R_{DS(on)} SGT technology
- Low thermal impedance
- Fast switching speed
- 100% avalanche tested

Application

- DC/DC conversion
- Power switch
- Motor drives


General Information

Shipping

- One shipping options is offered as standard
- Un-sawn wafer

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environmen

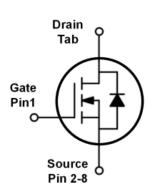
NOTE:

TOLL

LOGO - GS

GMXXXXX- Part number code

F - Fab location code


A - Assembly location code

Y - Year code

WW - Week code

L&T - Assembly lot code

Equivalent circuit

Absolute Maximum Rating (Ta=25°C) **Parameter Symbol** Limit Unit V_{DS} Drain-source voltage 100 V V_{GS} Gate-source voltage ±20 T_C=25°C (1) 259 I_D 164 Continuous drain current T_C=100°C Α T_A=25°C (4) 28 Pulsed drain current(2) 1036 $I_{D,pulse}$ Avalanche energy, single pulse(3) E_{AS} 1365 mJ Tc=25°C 250 P_D Power dissipation W $T_A=25$ °C (4) 3.1 T_J , T_{stg} -55 to 150 °C Operating junction and storage temperature range

	Electrical	characteristics ((Ta=25°C ± 3°C)
--	-------------------	-------------------	-----------------

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Static parameter							
Drain to source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	100			V	
Gate-source threshold voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250 μA		3.0	3.8	V	
Gate-body leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V			1	μΑ	
Drain-source on-resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 100 A		1.9	2	mΩ	
Forward transconductance ⁽⁵⁾	g _{fs}	V _{DS} = 5 V, I _D = 100 A		238		S	
Gate resistance	R_g	f = 1 MHz		2.0		Ω	
Dynamic ⁽⁵⁾							
Total gate charge	Q_g			176		nC	
Gate-source charge	Q_{gs}	V _{DS} = 50 V, I _D = 100 A, V _{GS} = 10 V		47			
Gate-drain charge	Q_{gd}			54			
Turn-on delay time	t _{d(on)}			85			
Rise time	tr	V _{DS} = 50 V, I _D = 100 A, V _{GS} = 10 V,		137		ns	
Turn-off delay time	$t_{\text{d(off)}}$	R _{GEN} = 6 Ω		92			
Fall time	t _f			98		<u>] </u>	
Input capacitance	C _{iss}			10120			
Output capacitance	C _{oss}	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz		1360		pF	
Reverse transfer capacitance	C _{rss}			50			
Reverse Diode Characteristics ⁽⁵⁾							
Diode forward voltage	V _{SD}	V _{GS} = 0 V, I _F = 100 A		0.9	1.2	V	
Reverse recovery time	t _{rr}	V _{DS} = 50 V, I _F = 50 A, di/dt = 100 A/µs		79		ns	
Reverse recovery charge	Qrr	VDS - 30 V, IF - 30 A, αl/αι - 100 A/μS		180		nC	

Notes

- (1) Limited by maximum junction temperature..
- (2) Pulse width limited by maximum junction temperature.
- (3) $V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.5 \text{ mH}.$
- (4) $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5x1.5 in. board of FR-4 material.
- (5) Guaranteed by design, not subject to production testing.

Thermal Characteristic (Ta=25°C)

Parameter	Symbol	Max.	Unit	
Thermal resistance, junction-to-case	Steady state	R ₀ JC	0.5	90 /\A/
Thermal resistance, junction-to-ambient (4)	Steady state	ReJA	40	°C/W

Electrical characteristics diagrams

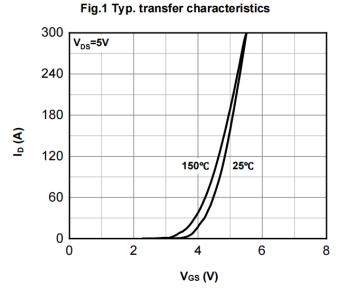


Fig.3 Normalized on-resistance vs drain current

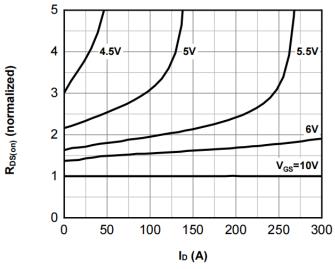


Fig.5 Normalized on-resistance vs junction temperature

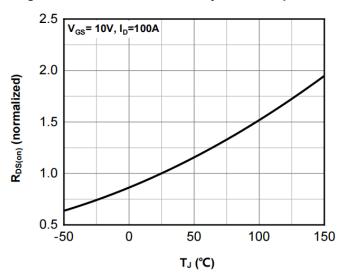


Fig.2 Typ. output characteristics

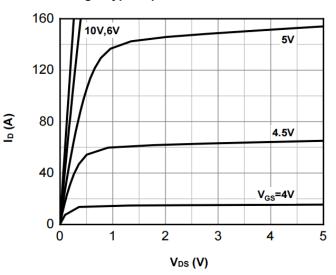


Fig.4 Typ. on-resistance vs gate-source voltage

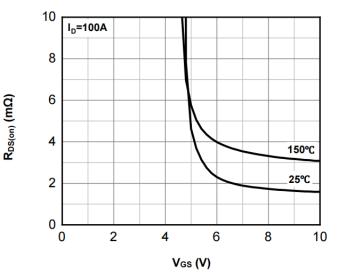


Fig.6 Typ. gate charge

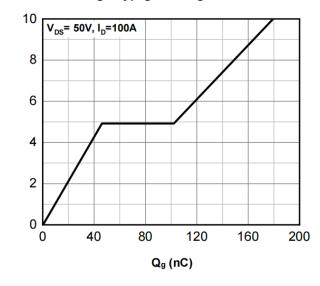


Fig.7 Typ. forward characteristics of body diode

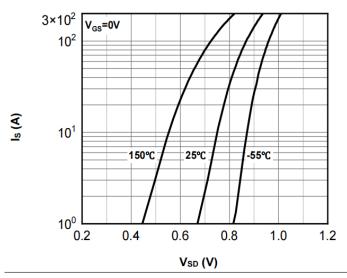


Fig.8 Safe operating area

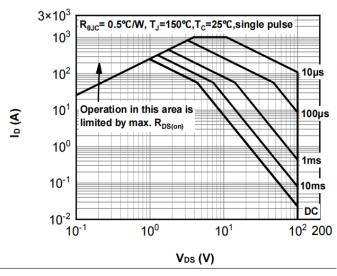


Fig.9 Typ. Capacitance

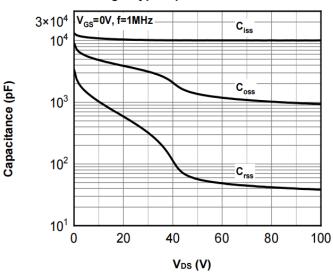


Fig.10 Single pulse maximum power dissipation

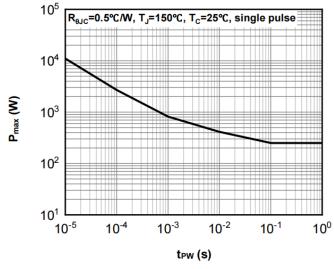


Fig.11 Max. power dissipation vs case temperature

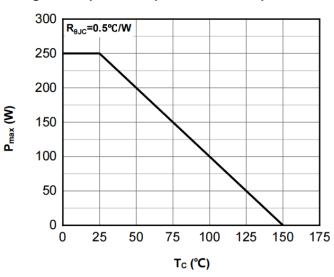
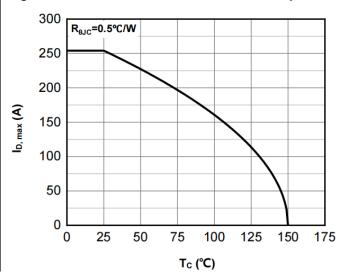



Fig.12 Max. continuous drain current vs case temperature

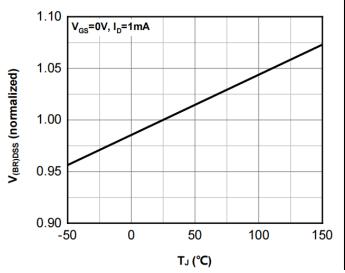
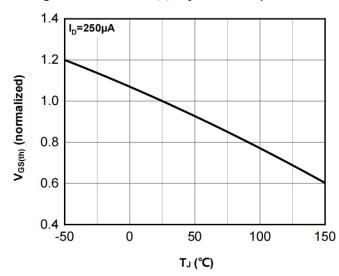
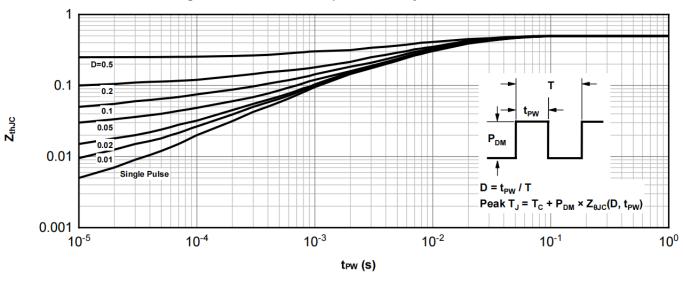
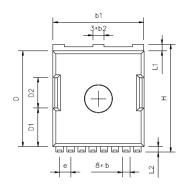
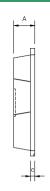
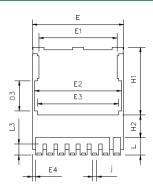
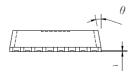


Fig.14 Normalized V_{GS(th)} vs junction temperature


Fig.15 Transient thermal impedance from junction to case





Package outline dimensions:TOLL

D.	Millimeters			
Dim	Min	Nom	Max	
A	2.20	-	2.40	
b	0.70	-	0.90	
b1	9.70	-	9.90	
b2	1.20 REF			
С	0.40	-	0.60	
D	10.28	-	10.48	
D1	4.08	-	4.28	
D2	3.20	-	3.40	
D3	3.16	-	3.36	
Е	9.80	-	10.00	
E1	8.40	-	8.60	
E2	9.30	-	9.50	
E3	8.80 REF			
E4	0.25 - 0.45		0.45	
e	1.20 BASIC			
Н	11.58	-	11.78	
H1	7.23	-	7.43	
H2	2.45 REF			
i	0.10	-	-	
j	0.45 REF			
L	1.60	-	2.10	
L1	0.60	-	0.80	
L2	0.50	-	0.70	
L3	1.05	-	1.30	
θ	10° REF			

Important Notice

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Gostone reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Gostone or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Gostone in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Gostone or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. In addition, any recipient of this document and the relevant products samples may not alter, decompile, disassemble, reverse engineer, or otherwise modify any information/samples received hereunder. Any intellectual property rights arising from the reverse engineering of Gostone's products shall belong to Gostone.