

; CGHCB9

GMS016N03E4

B!7\UbbY MOSFET 30J z %5a a U

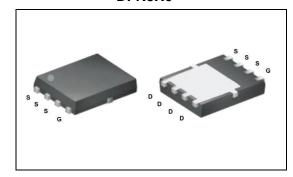
Product Summary

J _{8G}	F _{8 GfCBŁ} 'a UI ·	₃·a Ui ˙
H€XÁ	1.5{ ôÁOÁXÕÙÁWÁF€XÁ	185AÁ
	G6{ ôÁOÁXÕÙÁWÁLĚXÁ	IOSAA

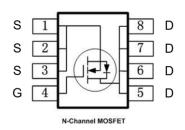
Features

- Low R_{DS(on)} trench technology
- Low thermal impedance
- Fast switching speed
- 100% avalanche tested

DFN5X6


Application

- DC/DC conversion
- Power switch
- Motor drives
- Li- Battery Protection


NOTE: LOGO - GS GMXXXXX- Part number code F - Fab location code A - Assembly location code

Y - Year code WW - Week code L&T - Assembly lot code

DFN5X6

Equivalent circuit

CfXYf]b[ˈ=bZcfa Uf]cb ·

DUfhBi a VYf	7 UgY	DOMĀLĪ JP[.
GMS016N03E4Á	ÖØÞÍ ÝÎ Á	5ÊE€€EDVæ}^ÁBÁÜ^^ Á

OPa•[| c^ÁT agtā] * ÁÜ agtā] * ÁQ agtAG »ÔD

DUfUa YhYfg'		Gma Vc`	AUI.	l b]hg [·]
Ö¦ænnn EÙ[ˇ ¦&^Áx[æet ^Á		X _{öù} Á	H€Á	XÁ
Õæc^ËÙ[ˇ¦&^Áx[æet^Á		X _{õù} Á	ł ŒÁ	XÁ
(H	V _ô ÁMÁÉGͰC	- /	FÌÍÁ	ŒÁ
Ô[} αၨϡ ˇ [ˇ • ÁÖ¦ æáð, ÁÔˇ ;;^} αဩᢆ	V _{ÔÁ} MÆF€€°C	Q Á	FŒÁ	ŒÁ
Ú •^åÁÖ æ∰ÁÔ ; '^} oÂ		Q ⊤Á	Í€€Á	ŒÁ
OTçæ æ) &@^ÁÔ´¦¦^}oÁŶÁ		Q _t iÁ	Ï € Á	ŒÁ
OTçæ æ)&@^ÁÒ}^¦*^Á [©] Á	ÁŠMEÈEÍ{ PÁ	ÒœùÁ	FGGÁ	{ RÁ
, ,,, ,,	V _ô ÁMÁÉGͰC		ÌJÁ	ΥÁ
Ú[¸^¦ÁÖã•đjæđãj} [°]	V _Ô ÁMÁÉF €€ °C	Ú _Ö Á	ΉĖ̈́Á	ΥÁ
U]^¦ænāj*Ánag}åÁnÙq[¦æt*^Áv^{[]^¦ænc	¦^ÁÜæ)*^Á	V _R É VõÁ	ÉÍÍÁ{[ÉFÍ€	°C

Thermal Characteristics

Characteristic	Symbol	Тур	Max	Unit	
Maximum Junction-to-Ambient A	t ≤ 10s	В	16	20	°C/W
Maximum Junction-to-Ambient A D	Steady-State	R _{0JA}	38.5	55	°C/W
Maximum Junction-to-Case	Steady-State	$R_{ heta JC}$	1.13	1.4	°C/W

Electrical Characteristics (@TJ = +25°C unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC PA	STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V	
	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V			1		
IDSS		T _J =55°C			5	μА	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	1.2	1.5	2.4	V	
		V_{GS} =10V, I_D =20A		1.2	1.5		
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C		1.9	2.4	mΩ	
		V _{GS} =4.5V, I _D =20A		1.6	2.6	mΩ	
g _{FS}	Forward Trans conductance	V_{DS} =5V, I_{D} =20A		129		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.67	1	V	
V_{SD}	Diode Forward Voltage I _S =85A,V _{GS} =0V			0.87	1.3	V	
I _S	Maximum Body-Diode Continuous Curr	ent			132	Α	
DYNAMIC I	PARAMETERS						
C _{iss}	Input Capacitance			3509		pF	
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		1847		pF	
C_{rss}	Reverse Transfer Capacitance	1 - 11011 12		86		pF	
R_g	Gate resistance	f=1MHz	0.7	1.5	2.3	Ω	
SWITCHING	SWITCHING PARAMETERS						
$Q_g(10V)$	Total Gate Charge			49		nC	
Q_gs	Gate Source Charge	$V_{GS}=10V, V_{DS}=15V,$		11.8		nC	
Q_gd	Gate Drain Charge	I _D =20A		6.8		nC	
t _{D(on)}	Turn-On Delay Time			13		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V,		63.6		ns	
$t_{D(off)}$	Turn-Off Delay Time	$R_L=0.75\Omega$, $R_{GEN}=3\Omega$		38		ns	
t _f	Turn-Off Fall Time			56		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs		51.4		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=100A/μs		52		nC	

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 1oz. Copper, in a still air environment with T_A=25°C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

 $C. \ \ Repetitive\ rating,\ pulse\ width\ limited\ by\ junction\ temperature\ T_{J(MAX)}=150^{\circ}C.\ Ratings\ are\ based\ on\ low\ frequency\ and\ duty\ cycles\ to\ keep\ initial\ T_J=25^{\circ}C.$

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a larger heatsink, assuming a maximum junction temperature of Tj(max)=150°C. The SOA curve provides a single pulse rating

G. The maximum current rating is package limited

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

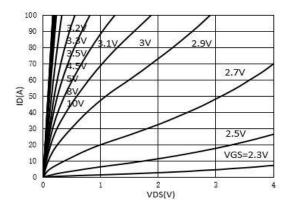
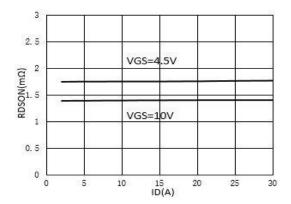
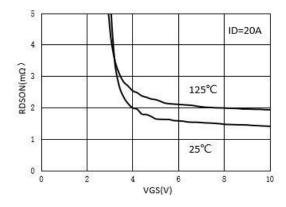




Figure 1: On-Region Characteristics (Note E)

Firgure3:On-Resistance vs. Drain Current and Gate Voltage(Note E)

Firgure 5:On-Resistance vs. Gate-Source Voltage(Note E)

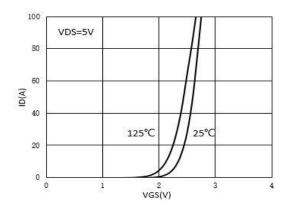


Figure 2:Transfer Characteristics(Note E)

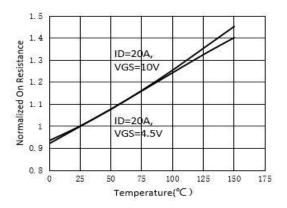


Figure 4:On-Resistance vs. Junction
Temperature(Note E)

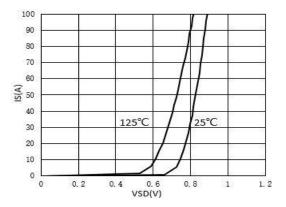


Figure 6: Body-Diode Characteristics (Note E)

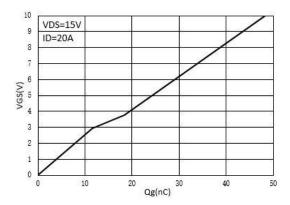


Figure 7: Gate-Charge Characteristics

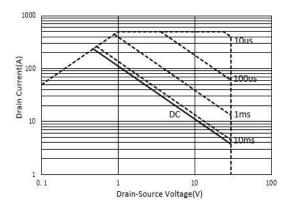


Figure 9:Maximum Forward Biased Safe
Operating Area (Note F)

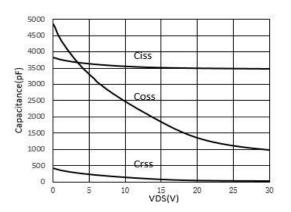


Figure 8:Capacitance Characteristics

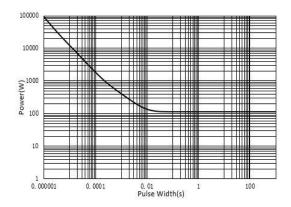
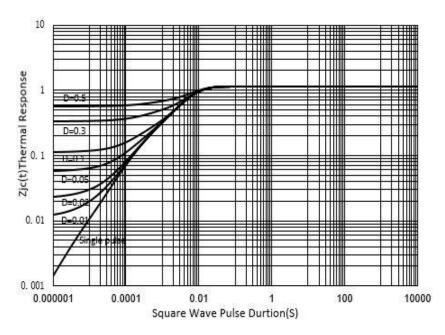
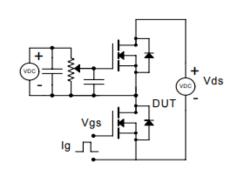
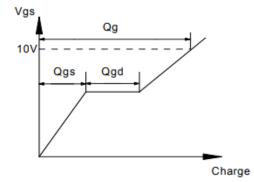
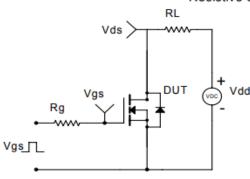


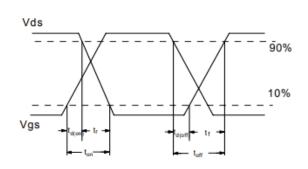
Figure 10:Single pulse Power Rating

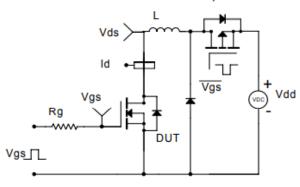
Junction-to-Case(Note F)

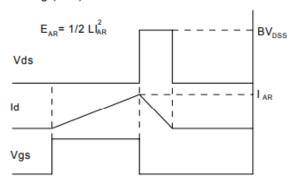



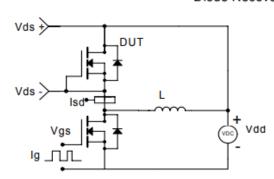

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

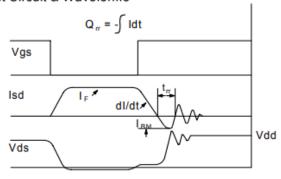

Test Circuit

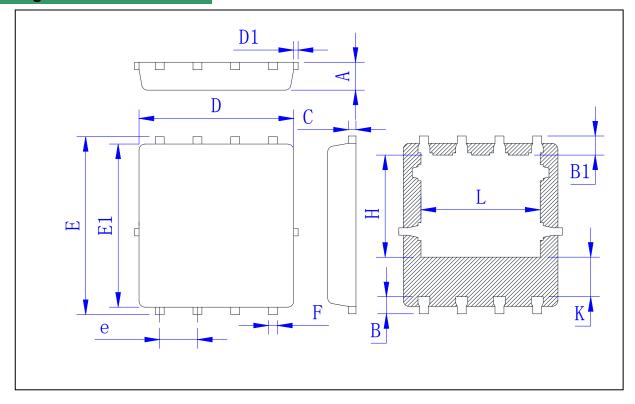

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms

Package outline:DFN5x6

Symbol	Min	Тур	Max
A	0.90	0.95	1.00
В	0.48	0.58	0.68
B1	0.55	0.65	0.75
С	0.20	0.254	0.30
D	5.10	5.20	5.30
D1			0.15
Е	5.90	6.05	6.20
E1	5.40	5.55	5.70
e	1.22	1.27	1.32
F	0.25	0.30	0.35
Н	3.27	3.47	3.67
L	3.80	4.00	4.20
K	1.20		

Important Notice

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Gostone reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Gostone or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Gostone in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Gostone or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. In addition, any recipient of this document and the relevant products samples may not alter, decompile, disassemble, reverse engineer, or otherwise modify any information/samples received hereunder. Any intellectual property rights arising from the reverse engineering of Gostone's products shall belong to Gostone.